An analytical calculation of the fluid load support fraction in a biphasic material: An alternative technique
نویسندگان
چکیده
BACKGROUND The fluid load support fraction (W(F)/W(T)) can be used to define the mechanical contribution of the interstitial fluid (W(F)) to the total force (W(T)) in the deformation of cartilage. Traditionally, W(F)/W(T) is calculated using complex experimental setups or time-consuming micromechanical poroelastic Finite Element (FE) simulations. AIM To define and validate a fast and efficient technique to predict W(F)/W(T) using an analytical approach that can be applied without micromechanical detail or experimental measurement. METHODOLOGY Poroelastic FE simulations defined accurate values of W(F)/W(T) for a range of loading configurations and were used to validate subsequent predictions. The analytical prediction of W(F)/W(T) used elastic contact mechanics to calculate W(F), and viscoelastic FE representation to calculate W(T). Subsequently, these independent calculations of W(F) and W(T) provided values of W(F)/W(T) that were compared with the poroelastic FE calculations. RESULTS AND DISCUSSION The analytical prediction of W(F)/W(T) proved effective and suitably accurate (mean difference S<0.05). This technique demonstrated how W(F) and W(T) can be determined independently, without a biphasic constitutive model. Here we used viscoelasticity to calculate W(T) as an example, however, W(T) could be measured experimentally or predicted computationally.
منابع مشابه
Free Natural Frequency Analysis of an FG Composite Rectangular Plate Coupled with Fluid using Rayleigh–Ritz Method
This study investigates natural frequency analysis of an FG composite rectangular plate partially contacting with a bounded fluid. The material properties are assumed to be varying continuously through the thickness direction according to a simple power law distribution in terms of volume fraction of material constituents. Wet dynamic transverse displacements of the plate are approximated by a ...
متن کاملAnalysis of Mode III Fraction in Functionally Graded Plate with Linearly Varying Properties
A model is provided for crack problem in a functionally graded semi-infinite plate under an anti-plane load. The characteristic of material behavior is assumed to change in a linear manner along the plate length. Also the embedded crack is placed in the direction of the material change. The problem is solved using two separate techniques. Primary, by applying Laplace and Fourier transformation,...
متن کاملOptimization of infinite composite plates with quasi-triangular holes under in-plane loading
This study used particle swarm optimization (PSO) to determine the optimal values of effective design variables acting on the stress distribution around a quasi-triangular hole in an infinite orthotropic plate. These parameters were load angle, hole orientation, bluntness, fiber angle, and material properties, which were ascertained on the basis of an analytical method used by Lekhnitskii [3]. ...
متن کاملCalculation of Natural Frequencies of Bi-Layered Rotating Functionally Graded Cylindrical Shells
In this paper, an exact analytical solution for free vibration of rotating bi-layered cylindrical shell composed of two independent functionally graded layers was presented. The thicknesses of the shell layers were assumed to be equal and constant. The material properties of the constituents of bi-layered FGM cylindrical shell were graded in the thickness direction of the layers of the shell ac...
متن کاملAn Analytical and Semi-analytical Study of the Oscillating Flow of Generalized Burgers’ Fluid through a Circular Porous Medium
Unsteady oscillatory flow of generalized Burgers’ fluid in a circular channel tube in the porous medium is investigated under the influence of time-dependent trapezoidal pressure gradient given by an infinite Fourier series. An exact analytical expression for the solution for the fluid velocity and the shear stress are recovered by using the similarity arguments together with the integral trans...
متن کامل